Home
Class 11
MATHS
lim(x rarr 1)(ax^(2)+bx+c)/(cx^(2)+bx+a)...

`lim_(x rarr 1)(ax^(2)+bx+c)/(cx^(2)+bx+a), a+b+c ne 0` is :

A

a+b+c

B

1

C

abc

D

2

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise EXERCISE|348 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE|319 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|226 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits:- lim_(x rarr 1)(ax^2 +bx+c)/(cx^2 + bx+a),a+b+c ne 0

Evaluate the following by the Method of Direct Substitution : lim_(x rarr 1)(ax^2+bx+c)/(cx^2 + bx+a),a+b+c ne 0 .

Evaluate the following : lim_(x rarr 0)(sin ax+bx)/(ax+sin bx), a,b, a+b ne 0 .

Evaluate the following limits:- lim_(x rarr 0)(sin ax + bx)/(ax + sinbx)a,b,a+b ne 0

lim_(x rarr 0)(sin ax)/(bx) is :

Evaluate the following limit : lim_(x rarr oo) (ax^2+bx+c)/(dx^2+ ex+f) .

Evaluate : lim_(x rarr 0)(sin ax)/(sin bx), a,b ne 0 .

Evaluate the given limit : lim_(x to 2) (ax^2 + bx + c)/(cx^2 + bx + a)

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

If alpha, beta are the zeroes of ax^2+ bx +c , then evaluate : lim_(x rarr beta)(1-cos (ax^2 +bx +c) )/((x-beta)^2) .