Home
Class 10
MATHS
Let alpha and beta be the roots of x^(2)...

Let `alpha` and `beta` be the roots of `x^(2)-5x+3=0` with `alpha gt beta`. If `a_(n) = a^(n)-beta^(n)` for `n ge1`, then the value of `(3a_(6)+a_(8))/(a_(7))` is :

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Identify the roots of the quadratic equation**: The given equation is \(x^2 - 5x + 3 = 0\). We will find the roots \(\alpha\) and \(\beta\) using the quadratic formula. \[ \alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -5\), and \(c = 3\). \[ \alpha, \beta = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 12}}{2} = \frac{5 \pm \sqrt{13}}{2} \] Since \(\alpha > \beta\), we have: \[ \alpha = \frac{5 + \sqrt{13}}{2}, \quad \beta = \frac{5 - \sqrt{13}}{2} \] **Hint**: Use the quadratic formula to find the roots of the equation. 2. **Define the sequence \(a_n\)**: The sequence is defined as \(a_n = \alpha^n - \beta^n\) for \(n \geq 1\). 3. **Calculate \(a_6\), \(a_7\), and \(a_8\)**: - \(a_6 = \alpha^6 - \beta^6\) - \(a_7 = \alpha^7 - \beta^7\) - \(a_8 = \alpha^8 - \beta^8\) 4. **Use the recurrence relation**: From the properties of the roots, we can derive a recurrence relation: \[ a_n = 5a_{n-1} - 3a_{n-2} \] This means: - \(a_1 = \alpha - \beta\) - \(a_2 = \alpha^2 - \beta^2\) - Using the recurrence, we can compute \(a_3\), \(a_4\), \(a_5\), \(a_6\), \(a_7\), and \(a_8\). 5. **Calculate \(3a_6 + a_8\)**: \[ 3a_6 + a_8 = 3(\alpha^6 - \beta^6) + (\alpha^8 - \beta^8) = 3\alpha^6 - 3\beta^6 + \alpha^8 - \beta^8 \] 6. **Factor out common terms**: \[ = (3\alpha^6 + \alpha^8) - (3\beta^6 + \beta^8) = \alpha^6(3 + \alpha^2) - \beta^6(3 + \beta^2) \] 7. **Substitute the values into the expression**: \[ \frac{3a_6 + a_8}{a_7} = \frac{\alpha^6(3 + \alpha^2) - \beta^6(3 + \beta^2)}{\alpha^7 - \beta^7} \] 8. **Simplify the expression**: Using the recurrence relation, we find that: \[ a_7 = \alpha^7 - \beta^7 = 5a_6 - 3a_5 \] Thus, we can simplify the fraction. 9. **Final result**: After substituting and simplifying, we find that: \[ \frac{3a_6 + a_8}{a_7} = 5 \] **Final Answer**: The value of \(\frac{3a_6 + a_8}{a_7}\) is \(5\). ---
Promotional Banner

Topper's Solved these Questions

  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 5. Arithmetic Progressions |2 Videos
  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 7. Triangles |1 Videos
  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 3. Pair of Linear Equations in Two Variables |2 Videos
  • NTSE 2019 -20

    OSWAL PUBLICATION|Exercise Probability Stage -2|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    OSWAL PUBLICATION|Exercise Self- Assessment|14 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of x^(2)-6x-2=0 with alpha>beta if a_(n)=alpha^(n)-beta^(n) for n>=1 then the value of (a_(10)-2a_(8))/(2a_(9))

Let alpha and beta are roots of x^(2) - 17x - 6 = 0 with alpha gt beta, if a_(n) = alpha^(n+2)+beta^(n+2) for n ge 5 then the value of (a_(10)-6a_(8)-a_(9))/(a_(9))

If alpha and beta be root of x^2-6x-2=0 with alpha gt beta if a_n=alpha^n-beta^n for n ge 1 then the value of (a_(10)-2a_8)/(3a_9)

Let alpha and beta be the roots x^(2)-6x-2=0 with alpha>beta If a_(n)-beta^(n) for or n>=1 then the value of (a_(10)-2a_(8))/(2a_(9)) is (a) 1 (b) 2(c)3(d)4

Let alpha and beta be roots of x^(2)-6(t^(2)-2t+2)x-2=0 with alpha>beta .if a_(n)=alpha^(n)-beta^(n) for n>=1, then find the minimum value of (a_(100)-2a_(98))/(a_(99)) (where t in R)

Let alpha and beta be the roots of the equation x^(2)-6x-2=0 If a_(n)=alpha^(n)-beta^(n) for n>=0 then find the value of (a_(10)-2a_(8))/(2a_(9))

Let alpha and beta are the roots of x^(2)+10x-7=0. If a_(n)=alpha^(n)+beta^(n) for n<=1 then the value of (a_(12)-7a_(10))/(2a_(11)) is

Let alpha and beta be the roots of equation x^2-6x-2""=""0 . If a_n=alpha^n-beta^n ,""for""ngeq1 , then the value of (a_(10)-2a_8)/(2a_9) is equal to: (1) 6 (2)-6 (3) 3 (4) -3