Home
Class 10
MATHS
If tan theta+sec theta=1.5, then value o...

If `tan theta+sec theta=1.5`, then value of `sin theta` is :

A

`(5)/(13)`

B

`(15)/(13)`

C

`(3)/(5)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \sec \theta = 1.5 \) and find the value of \( \sin \theta \), we can follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] Thus, we can rewrite the equation as: \[ \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = 1.5 \] Combining the terms gives: \[ \frac{\sin \theta + 1}{\cos \theta} = 1.5 \] ### Step 2: Clear the fraction To eliminate the fraction, multiply both sides by \( \cos \theta \): \[ \sin \theta + 1 = 1.5 \cos \theta \] ### Step 3: Rearrange the equation Rearranging gives: \[ \sin \theta = 1.5 \cos \theta - 1 \] ### Step 4: Square both sides Now we square both sides to eliminate the sine: \[ \sin^2 \theta = (1.5 \cos \theta - 1)^2 \] Expanding the right side: \[ \sin^2 \theta = (1.5^2 \cos^2 \theta - 2 \cdot 1.5 \cdot 1 \cdot \cos \theta + 1^2) \] \[ \sin^2 \theta = 2.25 \cos^2 \theta - 3 \cos \theta + 1 \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can replace \( \sin^2 \theta \): \[ 1 - \cos^2 \theta = 2.25 \cos^2 \theta - 3 \cos \theta + 1 \] This simplifies to: \[ 0 = 3.25 \cos^2 \theta - 3 \cos \theta \] ### Step 6: Factor the equation Factoring gives: \[ \cos \theta (3.25 \cos \theta - 3) = 0 \] This results in two cases: 1. \( \cos \theta = 0 \) 2. \( 3.25 \cos \theta - 3 = 0 \) ### Step 7: Solve for \( \cos \theta \) From the second case: \[ 3.25 \cos \theta = 3 \implies \cos \theta = \frac{3}{3.25} = \frac{12}{13} \] ### Step 8: Find \( \sin \theta \) Using the Pythagorean identity: \[ \sin^2 \theta + \left(\frac{12}{13}\right)^2 = 1 \] Calculating \( \left(\frac{12}{13}\right)^2 \): \[ \sin^2 \theta + \frac{144}{169} = 1 \] \[ \sin^2 \theta = 1 - \frac{144}{169} = \frac{25}{169} \] Taking the square root: \[ \sin \theta = \frac{5}{13} \quad \text{(since sine is positive in the first quadrant)} \] ### Final Answer Thus, the value of \( \sin \theta \) is: \[ \sin \theta = \frac{5}{13} \]
Promotional Banner

Topper's Solved these Questions

  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 11. Heights and Distances |1 Videos
  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 12. Areas Related to Circles |1 Videos
  • OLYMPIAD 2019-20

    OSWAL PUBLICATION|Exercise 8. Circles |1 Videos
  • NTSE 2019 -20

    OSWAL PUBLICATION|Exercise Probability Stage -2|1 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    OSWAL PUBLICATION|Exercise Self- Assessment|14 Videos

Similar Questions

Explore conceptually related problems

If tan theta+sec theta=4, then the value of sin theta is

If tan theta + sec theta =4 , the value of sin theta cos theta .

If sec theta+tan theta=x, then the value of sin theta is

If sqrt(3) tan theta = 3 sin theta , the value of sec theta is …..

If tan(theta + 3theta) tan (2theta + 3theta)=1 , then the value of sin(5theta - 2theta) is:

If sec theta + tan theta = m (>1) , then the value of sin theta is (0^@ यदि sec theta + tan theta = m (>1) हो, तो sin theta का मान ज्ञात कीजिए (0^@ < theta < 90^@)

If sec theta-tan theta-3, then the value of sin3 theta is equal to

If tan theta + sec theta = 4, then what is the value of sin theta ?

sec theta+tan theta=5 then the value of sin theta+cos theta

If sec theta-tan theta=p then find the value of sin theta

OSWAL PUBLICATION-OLYMPIAD 2019-20-10. Introduction to Trigonometry
  1. If tan theta+sec theta=1.5, then value of sin theta is :

    Text Solution

    |