Home
Class 14
MATHS
What is the value of 16^(2) +17^(2) +18^...

What is the value of `16^(2) +17^(2) +18^(2) + …….25^(2)`?

A

4325

B

4465

C

4105

D

4285

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 16^2 + 17^2 + 18^2 + \ldots + 25^2 \), we can use the formula for the sum of squares of the first \( n \) natural numbers: \[ \text{Sum of squares} = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 1: Calculate the sum of squares from 1 to 25 We first calculate the sum of squares from \( 1^2 \) to \( 25^2 \). Using the formula with \( n = 25 \): \[ \text{Sum}_{1 \text{ to } 25} = \frac{25(25 + 1)(2 \cdot 25 + 1)}{6} \] Calculating this step by step: - \( 25 + 1 = 26 \) - \( 2 \cdot 25 + 1 = 51 \) Now substituting these values into the formula: \[ \text{Sum}_{1 \text{ to } 25} = \frac{25 \cdot 26 \cdot 51}{6} \] Calculating \( 25 \cdot 26 = 650 \): \[ \text{Sum}_{1 \text{ to } 25} = \frac{650 \cdot 51}{6} \] Now calculating \( 650 \cdot 51 = 33150 \): \[ \text{Sum}_{1 \text{ to } 25} = \frac{33150}{6} = 5525 \] ### Step 2: Calculate the sum of squares from 1 to 15 Next, we calculate the sum of squares from \( 1^2 \) to \( 15^2 \). Using the formula with \( n = 15 \): \[ \text{Sum}_{1 \text{ to } 15} = \frac{15(15 + 1)(2 \cdot 15 + 1)}{6} \] Calculating this step by step: - \( 15 + 1 = 16 \) - \( 2 \cdot 15 + 1 = 31 \) Now substituting these values into the formula: \[ \text{Sum}_{1 \text{ to } 15} = \frac{15 \cdot 16 \cdot 31}{6} \] Calculating \( 15 \cdot 16 = 240 \): \[ \text{Sum}_{1 \text{ to } 15} = \frac{240 \cdot 31}{6} \] Now calculating \( 240 \cdot 31 = 7440 \): \[ \text{Sum}_{1 \text{ to } 15} = \frac{7440}{6} = 1240 \] ### Step 3: Calculate the sum from 16 to 25 Now we can find the sum from \( 16^2 \) to \( 25^2 \) by subtracting the two sums: \[ \text{Sum}_{16 \text{ to } 25} = \text{Sum}_{1 \text{ to } 25} - \text{Sum}_{1 \text{ to } 15} \] Substituting the values we calculated: \[ \text{Sum}_{16 \text{ to } 25} = 5525 - 1240 = 4285 \] ### Final Answer Thus, the value of \( 16^2 + 17^2 + 18^2 + \ldots + 25^2 \) is \( \boxed{4285} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (3.7)^(2) - (1.7)^(2) ?

What is the value of 14^2+16^2+18^2+...+30^2

What is the value of [(2.3)^(3) – (1.7)^(3)] / [(2.3)^(2) + (2.3 xx 1.7) + (1.7)^(2)] ?