Home
Class 14
MATHS
What is the value of 1^(3) + 2^(3) + 3^...

What is the value of ` 1^(3) + 2^(3) + 3^(3) + . . . . + 10^(3)` ?

A

5500

B

3025

C

6025

D

2975

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( 1^3 + 2^3 + 3^3 + \ldots + 10^3 \), we can use the formula for the sum of cubes of the first \( n \) natural numbers, which is given by: \[ \left( \frac{n(n + 1)}{2} \right)^2 \] ### Step-by-Step Solution: 1. **Identify \( n \)**: In this case, we need to find the sum up to \( 10^3 \), so \( n = 10 \). 2. **Substitute \( n \) into the formula**: \[ \text{Sum} = \left( \frac{10(10 + 1)}{2} \right)^2 \] 3. **Calculate \( 10 + 1 \)**: \[ 10 + 1 = 11 \] 4. **Calculate \( 10 \times 11 \)**: \[ 10 \times 11 = 110 \] 5. **Divide \( 110 \) by \( 2 \)**: \[ \frac{110}{2} = 55 \] 6. **Square the result**: \[ 55^2 = 3025 \] Thus, the value of \( 1^3 + 2^3 + 3^3 + \ldots + 10^3 \) is \( 3025 \). ### Final Answer: \[ \text{The value is } 3025. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1^(3) + 2^(3) + 3^(3) + 4^(3) + ……….. + 10^(3) =

What is the value of 3^(1) + 3^(-1) + 3^(2) + 3^(-2) ?

Find the value of ( 1^3 + 2^3 + 3^3 )^(-3/2)

Find the value of 1^(3) + 2^(3) + 3^(3) + …. + upto 10th terms.

Find the value of ( 1^3 + 2^3 + 3^3 ) ^(-1/2)

What is the value of 3^1+3^(-1)+3^2+3^(-2) ?

Find the value of 1 ^(3) + 2 ^(3) + 3 ^(3) + ...+ upto 10th terms.