Home
Class 14
MATHS
What is the value of sqrt(7 + 4sqrt(3))?...

What is the value of `sqrt(7 + 4sqrt(3))?`

A

` 2 - sqrt(3)`

B

`2 + sqrt(3)`

C

`3 + sqrt(3)`

D

`3 - sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{7 + 4\sqrt{3}} \), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \sqrt{7 + 4\sqrt{3}} \] ### Step 2: Rewrite the expression We can rewrite \( 7 \) as \( 4 + 3 \): \[ \sqrt{4 + 3 + 4\sqrt{3}} \] ### Step 3: Recognize the form of a perfect square Notice that \( 4 + 3 + 4\sqrt{3} \) can be expressed in the form \( (a + b)^2 \). We can try to express it as: \[ (a + b)^2 = a^2 + b^2 + 2ab \] where \( a^2 = 4 \) and \( b^2 = 3 \). ### Step 4: Determine \( a \) and \( b \) From \( a^2 = 4 \), we find \( a = 2 \). From \( b^2 = 3 \), we find \( b = \sqrt{3} \). Now, we calculate \( 2ab \): \[ 2ab = 2 \cdot 2 \cdot \sqrt{3} = 4\sqrt{3} \] ### Step 5: Combine the results Thus, we can write: \[ 7 + 4\sqrt{3} = (2 + \sqrt{3})^2 \] ### Step 6: Take the square root Now, we take the square root of both sides: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{(2 + \sqrt{3})^2} \] ### Step 7: Simplify This simplifies to: \[ 2 + \sqrt{3} \] ### Final Answer Thus, the value of \( \sqrt{7 + 4\sqrt{3}} \) is: \[ \boxed{2 + \sqrt{3}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

(1) sqrt(13-x sqrt(10))=sqrt(8)+sqrt(5) then find the value of x,(2) find sqrt(7+4sqrt(3))

if a=7-4sqrt(3), find the value of sqrt(a)+(1)/(sqrt(a))

If x=7-4sqrt(3) then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))