Home
Class 9
MATHS
If cos theta : sin theta 1:2, then find...

If `cos theta : sin theta 1:2,` then find the value of `( 8 cos theta - 2 sin theta)/( 4 cos theta + 2 sin theta).`

Text Solution

Verified by Experts

The correct Answer is:
`1/2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    NCERT TAMIL|Exercise EXERCISE 6.2|3 Videos
  • TRIGONOMETRY

    NCERT TAMIL|Exercise EXERCISE 6.3|4 Videos
  • TRIGONOMETRY

    NCERT TAMIL|Exercise EXERCISE 6.5 (MULTIPLE CHOICE QUESTIONS)|10 Videos
  • TRIANGLES

    NCERT TAMIL|Exercise EXERCISE - 7.4|7 Videos

Similar Questions

Explore conceptually related problems

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If tan theta = 1/b , then ( a sin theta - b cos theta )/( a sin theta + b cos theta) is

Simplify ((1 + cos 2 theta + i sin 2 theta)/(1 + cos 2 theta - i sin 2 theta))^(30)

the solution of sin ^3 theta cos theta - sin theta cos^3 theta = 1/4 is

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

determinant |"cos theta sin theta -sin theta cos theta

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is