Home
Class 11
CHEMISTRY
The correct Schrodinger's wave equation ...

The correct Schrodinger's wave equation for an electron with total energy E and potential energy V is given by : `(del^(2)Psi)/(del x^(2))+(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(dz^(2))+(8pi^(2))/(mh^(2)) (E-V) Psi=0`; `(del^(2)Psi)/(del x^(2)) +(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(delz^(2))+(8pim)/(h^(2))(E-V)Psi=0` ; `(del^(2)Psi)/(delx^(2)) +(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(delz^(2)) +(8pi^(2)m)/(h^(2))(E-V)Psi=0` ; `(del^(2)Psi)/(delx^(2))+(del^(2)Psi)/(dely^(2))+(del^(2)Psi)/(delz^(2)) +(8pi^(2)h)/(m^(2))(E-V)Psi=0`

A

`(del^(2)Psi)/(del x^(2))+(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(dz^(2))+(8pi^(2))/(mh^(2)) (E-V) Psi=0`

B

`(del^(2)Psi)/(del x^(2)) +(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(delz^(2))+(8pim)/(h^(2))(E-V)Psi=0`

C

`(del^(2)Psi)/(delx^(2)) +(del^(2)Psi)/(dely^(2)) +(del^(2)Psi)/(delz^(2)) +(8pi^(2)m)/(h^(2))(E-V)Psi=0`

D

`(del^(2)Psi)/(delx^(2))+(del^(2)Psi)/(dely^(2))+(del^(2)Psi)/(delz^(2)) +(8pi^(2)h)/(m^(2))(E-V)Psi=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

psi is the solution of Schrodinger's wave equation. Give the significance of psi and psi^2 .

The area bounded by the curve y=x(1-log_(e)x) and x-axis is a) (e^(2))/(4) b) (e^(2))/(2) c) (e^(2)-e)/(2) d) (e^(2)-e)/(4)

If intf(x)dx=Psi(x) , then intx^(5)f(x^(3))dx is equal to a) 1/3[x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx]+c b) 1/3x^(3)Psi(x^(3))-3intx^(2)Psi(x^(3))dx+c c) 1/3x^(3)Psi(x^(3))-intx^(2)Psi(x^(3))dx+c d) 1/3[x^(3)Psi(x^(3))-intx^(3)Psi(x^(3))dx]+c

int(2e^(5x)+e^(4x)-4e^(3x)+4e^(2x)+2e^(x))/((e^(2x)+4)(e^(2x)-1)^(2))dx= a) "tan"^(-1)(e^(x))/(2)-(1)/(e^(2x)-1)+C b) "tan"^(-1)e^(x)-(1)/(2(e^(2x)-1))+C c) "tan"^(-1)(e^(x))/(2)-(1)/(2(e^(2x)-1))+C d) 1-"tan"^(-1)((e^(x))/(2))+(1)/(2(e^(2x)-1))+C

int_(-pi/4)^(pi/4)(e^(x)*sec^(2)xdx)/(e^(2x)-1) is equal to

Integrate the following functions (e^(2x) -e^(-2x))/(e^(2x) + e^(-2x)

If int_(0)^(x)e^(xt).e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)f(t)dt then f(t) is a) e^(-t^(2)//4) b) e^(-t//4) c) 2e^(t^(2)//4) d) e^(t^(2)//2)

The Schrodinger wave equation for hydrogen atom is psi _(2r)^(2)=0=[(1)/(4 sqrt(2 pi))]^(2) (2-(r_(0))/(a_(0)))e^(-r_(n)//a_(0)) where a_(0) is Bohr's radius. Let the radial node be at r_(0) then find r in terms of a_(0) .