Home
Class 12
MATHS
Select the appropriate hint from the hin...

Select the appropriate hint from the hint basket and fill in the blank spaces in the following paragraph. [Activity]
"Let f(x)= `sin x` and g(x)= log x then f[g(x)]= ------- and g[f(x)]= ----. Now f'(x)= -------and g'(x)= -------. The derivative of `f[g(x)]` w.r.t.x in terms of f and g is ------. Therefore `(d)/(dx) [f[g(x)]]`= ------- and `[(d)/(dx) [f[g(x)]]]_(x=1)`= ------
The derivative of g [f(x)] w.r.t. x in terms of f and g is -----. Therefore `(d)/(dx) [g[f(x)]]`= ------and `[(d)/(dx) [g[f(x)]]]_(x= (pi)/(3))`= ----"
Hind basket : {f'[g(x)].g'(x), `(cos (log x))/(x)`, 1, g'[f(x)].f'(x), `cot x`, `sqrt3, sin (log x), log (sin x), cos x, (1)/(x)`}

Text Solution

Verified by Experts

The correct Answer is:
`sin (log x), log (sin x), cos x, (1)/(x), f'[g(x)].g' (x), (cos (log x))/(x), 1, g' [f(x)].f' (x), cot x, sqrt3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x)=x ^(2) , g (x) =5x -6, then f [g (x)]=

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f(x)=x " and " g(x)=sinx , then intf(x)*g(x)dx=

If f(x)=x^2+5 and g(x)=e^x+ 3 ,then find f'(g (0)) and g'(f(-1)).