Home
Class 12
MATHS
If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y),...

If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then show that `(dy)/(dx)= sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt((1-y^(2))/(1-x^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt (1-y^2) + sqrt (1-x^2) =a(x-y) , then show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt (1- x^2 ) + sqrt (1- y^2 ) = a(x-y), then show that dy/dx = sqrt ( frac{1- y^2 }{1- x^2 } )

If sqrt (1-x^2) + sqrt (1-y^2) = a(x-y) , show that dy/dx = sqrt (frac{1-y^2}{1-x^2})

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3) , prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where (-1 < x <,1 and -1 < y < 1.)

If : y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =