Home
Class 12
MATHS
inte^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))...

`inte^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))*dx`

Text Solution

Verified by Experts

The correct Answer is:
`e^(tan^(-1)x)*x+c`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(tan^(-1)x))/(1+x^2)dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(e^(tan^-1x))/(1+x^2)dx =

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

inte^(cot^(-1)x)/(1+x^(2))(x^(2)-x+1)dx="______"+c

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =