Home
Class 12
MATHS
int(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)...

`int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)*dx=1 `

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

`4+pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

Let f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt is equal to

\int_{0}^log 5 frac{e^x sqrt (e^x -1)}{e^x + 3} dx=........... A) 3+2 pi B) 4- pi C) 2+ pi D) 4+ pi