Home
Class 12
MATHS
If int(0)^(1)(dx)/(sqrt(1+x)-sqrt(x))=k/...

If `int_(0)^(1)(dx)/(sqrt(1+x)-sqrt(x))=k/3`, then k is equal to

A

`sqrt(2)(2sqrt(2)-2)`

B

`(sqrt(2))/(3)(2-2sqrt(2))`

C

`(2sqrt(2)-2)/(3)`

D

`4sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int(dx)/sqrt((1-x)(x-2)) , then I is equal to

\int_{0}^1 frac{dx}{sqrt (1+x) - sqrt x} = k/3 , then k is equal to......... A) sqrt 2(2sqrt 2 -2) B) (sqrt 2 /3)(2- 2sqrt 2) C) frac{sqrt 2(2 sqrt 2 -2)}{3} D) 4 sqrt 2

int_(2016)^(2017)(sqrt(x))/(sqrt(x)+sqrt(4033-x))dx is equal to

int(dx)/(sqrt(1-16x^2) =

int_0^2(3^(sqrt(x)))/(sqrt(x)) \ dx

int_(0)^(1//2)(dx)/((1+x^(2))sqrt(1-x^(2))) is equal to

Evaluate int_(0)^(1)(1)/(x+sqrt(x))dx

int_(0)^(sqrt(2))sqrt(2-x^(2))dx=?