Home
Class 12
MATHS
int(1)^(2)(1)/(x^(2))e^(1/x)*dx=...

`int_(1)^(2)(1)/(x^(2))e^(1/x)*dx=`

A

`sqrt(e)+1`

B

`sqrt(e)-1`

C

`sqrt(e)(sqrt(e)-1)`

D

`(sqrt(e)-1)/(e)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int_(0)^(1)(dx)/(x^(2)-2x+2)=

int_(1)^(e)(1+logx)/(x)dx