Home
Class 12
MATHS
Let I(1)=int(e)^(e^(2))(dx)/(logx)" and ...

Let `I_(1)=int_(e)^(e^(2))(dx)/(logx)" and "I_(2)=int_(1)^(2)(e^(x))/(x)*dx`, then

A

`I_(1)=1/3I_(2)`

B

`I_(1)+I_(2)=0`

C

`I_(1)=2I_(2)`

D

`I_(1)=I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e)(1+logx)/(x)dx

inte^(x)tan^(2)(e^(x))dx=

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

If I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx ,then

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=