Home
Class 12
MATHS
if b+c=a^2, c+a=b^2 and a+b=c^2 then fin...

if `b+c=a^2, c+a=b^2` and `a+b=c^2` then find the value of `1/(1+a) + 1/(1+b) +1/(1+c)`

A

-1

B

a

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1 , then show that 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1 .

If a + 1/b = b + 1/c = 1, then the value of c + 1/a is

If a prop b^2 and (1+b) prop sqrt© and if a=1 , then c=9 and b=5 , then find the value of a with respect of c .

If a^2/(b+c)=b^2/(a+c)=c^2/(a+b)=1 , then show that 1/(1+a)+1/(1+b)+1/(1+c)=1 .

If (b-c)^(2), (c-a)^(2), (a-b)^(2) are in A.P. then prove that, (1)/(b-c), (1)/(c-a), (1)/(a-b) are also in A.P.

If a^2, b^2, c^2 are in A.P , then prove that 1/(b+c), 1/(c+a),1/(a+b) are in A.P

If a,b,c are positive real number, then the least value of (a+b+c)(1/a+1/b+1/c) is

If a^2/(b+c)=b^2/(c+a)=c^2/(a+b)=1 , show that 1/(1+a)+1/(1+b)+1/(1+c)=1