Home
Class 12
MATHS
If x(2+sqrt3)=y(2-sqrt3)=1, then the val...

If `x(2+sqrt3)=y(2-sqrt3)=1`, then the value of `1/(x+1)+1/(y+1)` is :

A

1

B

`sqrt3`

C

`2sqrt3`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 2 + sqrt3 , then the value of x + (1)/(x) is

If a (2 + sqrt3) = b ( 2-sqrt3) =1 then find the value of 1/(a^(2) +1) + 1/(b^2 +1)

If x= 1/(2+sqrt3) and y = 1/(2-sqrt3) then evalue (1/(x+1) + 1/(y+1))

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If x = 1/(2-sqrt3) then find the value of (x^(3) -2x^(2) -7x+2)

If x = 1/(2-sqrt3) then find the value of (x^(3) -2x^2 - 7x +4)

If x= sqrt3+sqrt2 ,find the value of x^3-1/x^3 .

If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then the value of (dy)/(dx) is -

If x=(sqrt3+1)/(sqrt3-1) and xy=1 then find the value of (3x^2+5xy+3y^2)/(3x^2-5xy+3y^2)

If x= (sqrt5+1)/(sqrt5-1) and x = 1/y then find the value of (3x^(2) -7xy + 3y^(2))