Home
Class 12
MATHS
If x!=1,the value of 1/(x-1) - 1/(x+1) -...

If `x!=1`,the value of `1/(x-1) - 1/(x+1) -2/(x^2+1) - 4/(x^4+1)- 8/(x^8+1) - 16/(x^16-1)` is

A

`32/(x^4+1)`

B

0

C

1

D

`32/(x^32-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

find the value of int((x^3+8)(x-1))/(x^2-2x+4)dx

The vlaue of lim_(xrarr16)(x^(1//4)-16^(1//4))/(x-16) is

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is (a)4 (b) 1/2 (c) 2 (d) 1/4

Obtain the sum of (1)/(x+1)+(2)/(x^(2)+1)+(4)/(x^(4)+1)+...+ (2^(n))/(x^(2^(n))+1)

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

Find the derivatives of cos^(-1) (8x^(4)-8x^(2)+1)

If |[1, x, x^2], [x, x^2, 1], [x^2, 1, x]|=3, then find the value of |[x^3-1, 0, x-x^4], [0, x-x^4, x^3-1], [x-x^4, x^3-1, 0]|

Let us simplify using formula:- (x+1) (x^2 - x + 1) + (2x - 1) (4x^2 + 2x + 1) - (x-1)(x^2 + x + 1)

tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)