Home
Class 12
MATHS
(a+b)^2/((b-c)(c-a)+(b+c)^2/((a-b)(c-a)+...

`(a+b)^2/((b-c)(c-a)+(b+c)^2/((a-b)(c-a)+(c+a)^2/((a-b)(b-c)=`

A

(-1)

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

|{:(a^2,a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab):}|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that ((a)/(b)-(b)/(c))^(3)+((b)/(c)-(c)/(a))^(3)+((c)/(a)-(a)/(b))^(3)=(3(ca-b^(2))(ab-c^(2))(bc-a^(2)))/(a^(2)b^(2)c^(2))

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)

If a=-1,b=2,c=3," then"(a^(3)+b^(3)+c^(3)-3abc)/((a-b)^(2)+(b-c)^(2)+(c-a)^(2))=

Show that: abs(((b+c)^2,a^2,bc) , ((c+a)^2,b^2,ca) , ((a+b)^2,c^2,ab))=(a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

|{:(a,b,c),(a^2,b^2,c^2),(b+c,c+a,a+b):}|=(a-b)(b-c)(c-a)(a+b+c)

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c