Home
Class 12
CHEMISTRY
Calculate the emf of the following cell ...

Calculate the emf of the following cell at 298K:
`Mg(s)|Mg^(2+)(0.1M)||Cu^(2+)(1.0xx10^(-3)M)|Cu(s)` [Given=`E_(Cell)^(@)=2.71V`]

A

1.426 V

B

2.503V

C

2.651 V

D

1.8V

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the EMF of the given galvanic cell at 298 K, we will follow these steps: ### Step 1: Write the overall cell reaction The cell reaction can be derived from the oxidation and reduction half-reactions. - **Oxidation half-reaction**: \[ \text{Mg}(s) \rightarrow \text{Mg}^{2+}(aq) + 2e^- \] - **Reduction half-reaction**: \[ \text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s) \] Combining these half-reactions gives us the overall cell reaction: \[ \text{Mg}(s) + \text{Cu}^{2+}(aq) \rightarrow \text{Mg}^{2+}(aq) + \text{Cu}(s) \] ### Step 2: Identify the standard cell potential (E°cell) From the problem statement, we are given: \[ E°_{cell} = 2.71 \, \text{V} \] ### Step 3: Determine the concentrations of the ions The concentrations provided in the problem are: - \([\text{Mg}^{2+}] = 0.1 \, \text{M}\) - \([\text{Cu}^{2+}] = 1.0 \times 10^{-3} \, \text{M}\) ### Step 4: Use the Nernst equation The Nernst equation is given by: \[ E_{cell} = E°_{cell} - \frac{0.0591}{n} \log \left( \frac{[\text{Mg}^{2+}]}{[\text{Cu}^{2+}]} \right) \] where \(n\) is the number of moles of electrons transferred in the reaction. Here, \(n = 2\). ### Step 5: Substitute values into the Nernst equation Substituting the known values into the Nernst equation: \[ E_{cell} = 2.71 \, \text{V} - \frac{0.0591}{2} \log \left( \frac{0.1}{1.0 \times 10^{-3}} \right) \] ### Step 6: Calculate the logarithm Calculating the logarithm: \[ \log \left( \frac{0.1}{1.0 \times 10^{-3}} \right) = \log(100) = 2 \] ### Step 7: Substitute the logarithm back into the equation Now substituting back: \[ E_{cell} = 2.71 \, \text{V} - \frac{0.0591}{2} \times 2 \] \[ E_{cell} = 2.71 \, \text{V} - 0.0591 \] \[ E_{cell} = 2.71 \, \text{V} - 0.0591 = 2.6509 \, \text{V} \] ### Step 8: Round the result Rounding the result gives: \[ E_{cell} \approx 2.651 \, \text{V} \] ### Final Answer Thus, the EMF of the cell at 298 K is: \[ \boxed{2.651 \, \text{V}} \]

To calculate the EMF of the given galvanic cell at 298 K, we will follow these steps: ### Step 1: Write the overall cell reaction The cell reaction can be derived from the oxidation and reduction half-reactions. - **Oxidation half-reaction**: \[ \text{Mg}(s) \rightarrow \text{Mg}^{2+}(aq) + 2e^- ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(a) What is limiting molar conductivity ? Why there is step rise in the molar conductivity of weak electrolyte on dilution ? (b) Calculate the emf of the following cell at 298 K : Mg(s) |Mg^(2+)(0.1 M)||Cu^(2+)(1.0 xx 10^(-3)M)|Cu(s) [Given : E_("cell")^(@) = 2.71 V]

State Faraday's first law of electrolysis . How much charge in terms of Faraday is required for the reduction of 1mol of Cu^(2+) to Cu. (b) Calculate emf of the following cell at 298 K : Mg(s) | Mg ^(2+)(0.1 M)||Cu^(2+) (0.01)|Cu(s) [Given E_(cell)^(@)=+ 2.71V, 1 F = 96500C mol^(-1)]

Write the nearest equation and calculate the e.m.f. of the following cell at 298 K Cu(s)|Cu^(2+)(0.130M)||Ag^(+)(1.00xx10^(-4)M)|Ag(s) Given :E_(Cu^(2+)//Cu)^(@)=0.34V and E_(Ag^(+)//Ag)^(@)=+0.80V

Calculate the emf of the following cell at 25^(@)C Ag(s) |Ag+ (10^(-3)M) | |Cu 2+ (10^(-1)M | Cu(s) :

Write the Nernst equation and calculate the e.m.f. of the following cell at 298 K : Cu(s) | Cu^(2+) (0.130 M) || Ag^(+) (1.0 xx 10^(-4) M) | Ag (s) Given : E_((Cu^(2+) | Cu))^(Theta) = + 0.34 V and E_((Ag^(+) |Ag))^(Theta) = + 0.80 V

Calculate the emf of the following cell at 298K : Fe(s)|Fe^(2+)(0.001M)||H^+(1M)|H_2(g)(1"bar"),Pt(s) (Given E_("Cell")^@=+0.44V)

Calculate the e.m.f of the cell Mg(s)//Mg^(2+)(0.1 M)||Cu^(2+)(1.0xx10^(-3) M)//Cu(s) Given E_(Cu^(2+)//Cu)^(@)=+0.34 V and E_(Mg^(2+)//Mg)^(@)=-2.37 V