Home
Class 12
MATHS
The value of sin^(-1)(cos""(3pi)/(5)) is...

The value of `sin^(-1)(cos""(3pi)/(5))` is

A

`(pi)/(10)`

B

`(3pi)/(5)`

C

`-(pi)/(10)`

D

`(-3pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sin^{-1}(\cos(\frac{3\pi}{5}))\), we can follow these steps: 1. **Use the complementary angle identity for cosine and sine:** \[ \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \] Here, \(\theta = \frac{3\pi}{5}\). 2. **Rewrite the expression using the identity:** \[ \sin^{-1}\left(\cos\left(\frac{3\pi}{5}\right)\right) = \sin^{-1}\left(\sin\left(\frac{\pi}{2} - \frac{3\pi}{5}\right)\right) \] 3. **Simplify the argument of the sine function:** \[ \frac{\pi}{2} - \frac{3\pi}{5} = \frac{5\pi}{10} - \frac{6\pi}{10} = -\frac{\pi}{10} \] 4. **Substitute back into the expression:** \[ \sin^{-1}\left(\sin\left(-\frac{\pi}{10}\right)\right) \] 5. **Use the property of the inverse sine function:** \[ \sin^{-1}(\sin(\theta)) = \theta \quad \text{if} \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \] Since \(-\frac{\pi}{10}\) is within the range \(-\frac{\pi}{2} \leq -\frac{\pi}{10} \leq \frac{\pi}{2}\), we can directly write: \[ \sin^{-1}\left(\sin\left(-\frac{\pi}{10}\right)\right) = -\frac{\pi}{10} \] Therefore, the value of \(\sin^{-1}(\cos(\frac{3\pi}{5}))\) is \(-\frac{\pi}{10}\).
Promotional Banner