Home
Class 12
MATHS
The value of tan[(1)/(2)cos^(-1)((sqrt5)...

The value of `tan[(1)/(2)cos^(-1)((sqrt5)/(3))]` is

A

`(3+sqrt5)/(2)`

B

`(3-sqrt5)/(2)`

C

`(-3+sqrt5)/(2)`

D

`(-3-sqrt5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right) \), we can follow these steps: ### Step 1: Define the angle Let \( \theta = \cos^{-1}\left(\frac{\sqrt{5}}{3}\right) \). This implies that \( \cos \theta = \frac{\sqrt{5}}{3} \). ### Step 2: Use the half-angle formula for tangent We can use the half-angle formula for tangent: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin \theta}{1 + \cos \theta} \] ### Step 3: Find \( \sin \theta \) To find \( \sin \theta \), we can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{\sqrt{5}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{5}{9} = 1 \] \[ \sin^2 \theta = 1 - \frac{5}{9} = \frac{4}{9} \] Taking the square root: \[ \sin \theta = \frac{2}{3} \quad (\text{since } \theta \text{ is in the range } [0, \pi]) \] ### Step 4: Substitute \( \sin \theta \) and \( \cos \theta \) into the half-angle formula Now we can substitute \( \sin \theta \) and \( \cos \theta \) into the half-angle formula: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin \theta}{1 + \cos \theta} = \frac{\frac{2}{3}}{1 + \frac{\sqrt{5}}{3}} \] ### Step 5: Simplify the expression First, simplify the denominator: \[ 1 + \frac{\sqrt{5}}{3} = \frac{3 + \sqrt{5}}{3} \] Now substituting back: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\frac{2}{3}}{\frac{3 + \sqrt{5}}{3}} = \frac{2}{3 + \sqrt{5}} \] ### Step 6: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ \tan\left(\frac{\theta}{2}\right) = \frac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} \] Calculating the denominator: \[ (3 + \sqrt{5})(3 - \sqrt{5}) = 3^2 - (\sqrt{5})^2 = 9 - 5 = 4 \] So we have: \[ \tan\left(\frac{\theta}{2}\right) = \frac{2(3 - \sqrt{5})}{4} = \frac{3 - \sqrt{5}}{2} \] ### Final Answer Thus, the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right) \) is: \[ \frac{3 - \sqrt{5}}{2} \] ---
Promotional Banner