Home
Class 12
MATHS
The principal value of cos^(-1)((1)/(2...

The principal value of
`cos^(-1)((1)/(2))+2sin^(-1)((1)/(2))+4tan^(-1)((1)/(sqrt3))` is

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(4pi)/(3)`

D

`(3pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) + 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) The value of \( \cos^{-1}\left(\frac{1}{2}\right) \) is known to be \( \frac{\pi}{3} \) radians. ### Step 2: Evaluate \( \sin^{-1}\left(\frac{1}{2}\right) \) The value of \( \sin^{-1}\left(\frac{1}{2}\right) \) is known to be \( \frac{\pi}{6} \) radians. Since we have \( 2\sin^{-1}\left(\frac{1}{2}\right) \), we multiply this by 2: \[ 2\sin^{-1}\left(\frac{1}{2}\right) = 2 \times \frac{\pi}{6} = \frac{\pi}{3} \] ### Step 3: Evaluate \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \) The value of \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \) is known to be \( \frac{\pi}{6} \) radians. Since we have \( 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \), we multiply this by 4: \[ 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 4 \times \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] ### Step 4: Combine all the values Now we combine all the evaluated parts: \[ \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) + 4\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3} + \frac{\pi}{3} + \frac{2\pi}{3} \] ### Step 5: Simplify the expression Adding these fractions: \[ \frac{\pi}{3} + \frac{\pi}{3} + \frac{2\pi}{3} = \frac{1\pi + 1\pi + 2\pi}{3} = \frac{4\pi}{3} \] ### Final Answer Thus, the principal value of the given expression is: \[ \boxed{\frac{4\pi}{3}} \]
Promotional Banner