Home
Class 12
MATHS
Domain of sec^(-1)x is :...

Domain of `sec^(-1)x` is :

A

R-(-1,1)

B

R

C

`[-1,1]`

D

`R-(0,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( \sec^{-1}(x) \), we need to understand the range of the secant function, \( \sec(x) \). ### Step-by-Step Solution: 1. **Understanding the Secant Function**: The secant function is defined as: \[ \sec(x) = \frac{1}{\cos(x)} \] The secant function is undefined wherever \( \cos(x) = 0 \), which occurs at odd multiples of \( \frac{\pi}{2} \). 2. **Range of the Secant Function**: The range of \( \sec(x) \) can be determined from the behavior of the cosine function. The cosine function oscillates between -1 and 1. Therefore, the secant function, which is the reciprocal of the cosine function, will take values outside this interval: \[ \text{Range of } \sec(x) = (-\infty, -1] \cup [1, \infty) \] 3. **Domain of the Inverse Secant Function**: The domain of the inverse function \( \sec^{-1}(x) \) is the same as the range of the secant function. Thus, the domain of \( \sec^{-1}(x) \) is: \[ \text{Domain of } \sec^{-1}(x) = (-\infty, -1] \cup [1, \infty) \] 4. **Conclusion**: Therefore, the domain of \( \sec^{-1}(x) \) is: \[ \boxed{(-\infty, -1] \cup [1, \infty)} \]
Promotional Banner