Home
Class 12
MATHS
Let A=[{:(200,50),(10,2):}] and B=[{:(50...

Let A`=[{:(200,50),(10,2):}]` and `B=[{:(50,40),(2,3):}]`, then `|AB|` is equal to

A

460

B

2000

C

3000

D

`-7000`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the product of two matrices \( A \) and \( B \), we can use the property that states: \[ |AB| = |A| \cdot |B| \] Given the matrices: \[ A = \begin{pmatrix} 200 & 50 \\ 10 & 2 \end{pmatrix} \] \[ B = \begin{pmatrix} 50 & 40 \\ 2 & 3 \end{pmatrix} \] We will first calculate the determinant of matrix \( A \) and then the determinant of matrix \( B \). ### Step 1: Calculate the determinant of \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ |A| = ad - bc \] For matrix \( A \): - \( a = 200 \) - \( b = 50 \) - \( c = 10 \) - \( d = 2 \) Calculating the determinant: \[ |A| = (200 \cdot 2) - (50 \cdot 10) \] \[ |A| = 400 - 500 = -100 \] ### Step 2: Calculate the determinant of \( B \) Using the same formula for matrix \( B \): For matrix \( B \): - \( a = 50 \) - \( b = 40 \) - \( c = 2 \) - \( d = 3 \) Calculating the determinant: \[ |B| = (50 \cdot 3) - (40 \cdot 2) \] \[ |B| = 150 - 80 = 70 \] ### Step 3: Calculate the determinant of \( AB \) Now, using the property of determinants: \[ |AB| = |A| \cdot |B| \] Substituting the values we found: \[ |AB| = (-100) \cdot 70 \] \[ |AB| = -7000 \] Thus, the final answer is: \[ |AB| = -7000 \]
Promotional Banner