Home
Class 12
MATHS
If |{:(2x,5),(8,x):}|=|{:(6,-2),(7,3):}|...

If `|{:(2x,5),(8,x):}|=|{:(6,-2),(7,3):}|`, then the value of x is

A

3

B

`+-3`

C

`+-6`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \begin{pmatrix} 2x & 5 \\ 8 & x \end{pmatrix} | = | \begin{pmatrix} 6 & -2 \\ 7 & 3 \end{pmatrix} | \), we will first calculate the determinants of both matrices. ### Step 1: Calculate the determinant of the first matrix The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ |A| = ad - bc \] For the first matrix \( \begin{pmatrix} 2x & 5 \\ 8 & x \end{pmatrix} \): - \( a = 2x \) - \( b = 5 \) - \( c = 8 \) - \( d = x \) Using the determinant formula: \[ | \begin{pmatrix} 2x & 5 \\ 8 & x \end{pmatrix} | = (2x)(x) - (5)(8) = 2x^2 - 40 \] ### Step 2: Calculate the determinant of the second matrix Now, let's calculate the determinant of the second matrix \( \begin{pmatrix} 6 & -2 \\ 7 & 3 \end{pmatrix} \): - \( a = 6 \) - \( b = -2 \) - \( c = 7 \) - \( d = 3 \) Using the determinant formula: \[ | \begin{pmatrix} 6 & -2 \\ 7 & 3 \end{pmatrix} | = (6)(3) - (-2)(7) = 18 + 14 = 32 \] ### Step 3: Set the determinants equal to each other Now we set the two determinants equal to each other: \[ 2x^2 - 40 = 32 \] ### Step 4: Solve for \( x \) To solve for \( x \), first add 40 to both sides: \[ 2x^2 = 32 + 40 \] \[ 2x^2 = 72 \] Next, divide both sides by 2: \[ x^2 = \frac{72}{2} = 36 \] Now, take the square root of both sides: \[ x = \pm 6 \] ### Final Answer Thus, the values of \( x \) are: \[ x = 6 \quad \text{or} \quad x = -6 \]
Promotional Banner