Home
Class 12
MATHS
If |{:(x,2),(18,x):}|=|{:(6,2),(18,6):}|...

If `|{:(x,2),(18,x):}|=|{:(6,2),(18,6):}|` then x is equal to

A

6

B

`+-6`

C

`-6`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \begin{pmatrix} x & 2 \\ 18 & x \end{pmatrix} | = | \begin{pmatrix} 6 & 2 \\ 18 & 6 \end{pmatrix} | \), we will first calculate the determinants of both matrices and then equate them. ### Step 1: Calculate the determinant of the first matrix The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ |A| = ad - bc \] For the first matrix \( \begin{pmatrix} x & 2 \\ 18 & x \end{pmatrix} \): - \( a = x \) - \( b = 2 \) - \( c = 18 \) - \( d = x \) Thus, the determinant is: \[ | \begin{pmatrix} x & 2 \\ 18 & x \end{pmatrix} | = x \cdot x - 2 \cdot 18 = x^2 - 36 \] ### Step 2: Calculate the determinant of the second matrix For the second matrix \( \begin{pmatrix} 6 & 2 \\ 18 & 6 \end{pmatrix} \): - \( a = 6 \) - \( b = 2 \) - \( c = 18 \) - \( d = 6 \) Thus, the determinant is: \[ | \begin{pmatrix} 6 & 2 \\ 18 & 6 \end{pmatrix} | = 6 \cdot 6 - 2 \cdot 18 = 36 - 36 = 0 \] ### Step 3: Set the determinants equal to each other Now we set the two determinants equal to each other: \[ x^2 - 36 = 0 \] ### Step 4: Solve for \( x \) To solve for \( x \), we can factor the equation: \[ x^2 - 36 = (x - 6)(x + 6) = 0 \] Setting each factor to zero gives us: 1. \( x - 6 = 0 \) → \( x = 6 \) 2. \( x + 6 = 0 \) → \( x = -6 \) ### Conclusion The values of \( x \) that satisfy the equation are \( x = 6 \) and \( x = -6 \).
Promotional Banner