Home
Class 12
MATHS
Given A=[{:(2,-3),(-4,7):}] Assertion ...

Given `A=[{:(2,-3),(-4,7):}]`
Assertion (A) : `2A^(-1)=9I-A`
Reason (R ) : `A^(-1)=(1)/(|A|)(adjA)`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is NOT the correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : If A=[{:(2,3),(5,-2):}] and A^(-1)=kA , then k=(1)/(9) Reason (R ) : |A^(-1)|=(1)/(|A|)

Given A=([2,-3-4,7]) compute A^(-1) and show that 2A^(-1)=9I-A

If A=[{:(2,-3),(-4,7):}] , compute A^(-1) and show that 2A^(-1)+A-9I=O .

Let A be a 2xx2 matrix. Assertion (A) : adj(adjA)=A Reason (R ) : |adjA|=|A|

Given =[2-3-47], compute A^(-1) and show that 2A^(-1)=9I-A

If A=[{:(3,1),(2,-3):}] , then find |adj.A| .

If A=[(2,1),(9,3)] and A^(2)-5A+7I=O , then A^(-1)=

If A=[(2,1),(7,5)] , find |A(adjA)|

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}] . Verify that ltbtgt (i) [adjA]^(-1)=adj (A^(-1)) (ii) (A^(-1)^(-1)=A