Home
Class 12
MATHS
int(cos 2x - cos 2 theta)/(cos x - cos t...

`int(cos 2x - cos 2 theta)/(cos x - cos theta)dx` is equal to

A

`2(sin x + x cos theta) + C`

B

`2(sin x - x cos theta) + C`

C

`2 (sin x + 2 x cos theta) + C`

D

`2(sin x - 2 x cos theta) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Numerator Using the double angle formula for cosine, we can express \(\cos 2x\) and \(\cos 2\theta\): \[ \cos 2x = 2\cos^2 x - 1 \quad \text{and} \quad \cos 2\theta = 2\cos^2 \theta - 1. \] Thus, we can rewrite the numerator: \[ \cos 2x - \cos 2\theta = (2\cos^2 x - 1) - (2\cos^2 \theta - 1) = 2\cos^2 x - 2\cos^2 \theta. \] ### Step 2: Factor the Numerator Now, we can factor out the common term: \[ 2(\cos^2 x - \cos^2 \theta). \] ### Step 3: Use the Difference of Squares We can apply the difference of squares identity: \[ \cos^2 x - \cos^2 \theta = (\cos x - \cos \theta)(\cos x + \cos \theta). \] Thus, the integral becomes: \[ \int \frac{2(\cos x - \cos \theta)(\cos x + \cos \theta)}{\cos x - \cos \theta} \, dx. \] ### Step 4: Simplify the Integral We can cancel the \((\cos x - \cos \theta)\) terms in the numerator and denominator (assuming \(\cos x \neq \cos \theta\)): \[ \int 2(\cos x + \cos \theta) \, dx. \] ### Step 5: Separate the Integral Now we can separate the integral: \[ 2 \int (\cos x + \cos \theta) \, dx = 2 \left( \int \cos x \, dx + \int \cos \theta \, dx \right). \] ### Step 6: Integrate The integral of \(\cos x\) is \(\sin x\), and since \(\cos \theta\) is a constant, its integral is \(\cos \theta \cdot x\): \[ = 2 \left( \sin x + x \cos \theta \right) + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ \int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} \, dx = 2\sin x + 2x \cos \theta + C. \]
Promotional Banner