Home
Class 12
MATHS
intsqrt(1+x^(2)) dx is equal to...

`intsqrt(1+x^(2)) dx` is equal to

A

`(x)/(2)sqrt(1+x^(2)) + (1)/(2) log |(x + sqrt(1 + x^(2)))| + C`

B

`(2)/(3)(1+x^(2))^(3//2) + C`

C

`(2)/(3)x(1+x^(2))^(3//2) + C`

D

`(x^(2))/(2) sqrt(1 + x^(2)) + (1)/(2)x^(2)log (x + sqrt(1 + x^(2))) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + x^2} \, dx \), we can use a standard formula for integrating expressions of the form \( \sqrt{a^2 + x^2} \). ### Step-by-Step Solution: 1. **Identify the Formula**: The formula for integrating \( \sqrt{a^2 + x^2} \) is given by: \[ \int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \ln \left| x + \sqrt{a^2 + x^2} \right| + C \] where \( C \) is the constant of integration. 2. **Substituting Values**: In our case, we have \( a = 1 \). Therefore, we substitute \( a = 1 \) into the formula: \[ \int \sqrt{1 + x^2} \, dx = \frac{x}{2} \sqrt{1 + x^2} + \frac{1^2}{2} \ln \left| x + \sqrt{1 + x^2} \right| + C \] 3. **Simplifying the Expression**: Now, simplify the expression: \[ = \frac{x}{2} \sqrt{1 + x^2} + \frac{1}{2} \ln \left| x + \sqrt{1 + x^2} \right| + C \] 4. **Final Result**: Thus, the integral \( \int \sqrt{1 + x^2} \, dx \) is: \[ \int \sqrt{1 + x^2} \, dx = \frac{x}{2} \sqrt{1 + x^2} + \frac{1}{2} \ln \left| x + \sqrt{1 + x^2} \right| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

intsqrt(x^(2)+2x+5)dx is equal to

intsqrt(1+x^(2)/9)dx

intsqrt(2x-x^(2))dx

intsqrt(2x^(2)-3)dx

intsqrt(x^(2)+x)dx

intsqrt(x^(2)-2)dx

intsqrt(4-x^(2))dx

intsqrt(x^(2)+5)dx

intsqrt(x^(2)-5)dx

intsqrt(1+cos x )dx is equal to