Home
Class 12
MATHS
If f(x) = int(0)^(x)t sin t dt, then f'(...

If `f(x) = int_(0)^(x)t sin t dt`, then f'(x) is

A

`cos x + x sin x`

B

`x sin x`

C

`x cos x`

D

`sin x + x cos x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) for the function defined as \[ f(x) = \int_{0}^{x} t \sin t \, dt, \] we will use the Fundamental Theorem of Calculus, specifically Leibniz's rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the function and its limits**: The function \( f(x) \) is defined as the integral of \( t \sin t \) from 0 to \( x \). 2. **Apply the Fundamental Theorem of Calculus**: According to the theorem, if \( F(t) \) is an antiderivative of \( f(t) \), then: \[ \frac{d}{dx} \left( \int_{a}^{g(x)} f(t) \, dt \right) = f(g(x)) \cdot g'(x). \] Here, \( g(x) = x \) and \( a = 0 \). 3. **Differentiate \( f(x) \)**: We can express \( f'(x) \) as: \[ f'(x) = t \sin t \bigg|_{t=x} \cdot \frac{d}{dx}(x) - t \sin t \bigg|_{t=0} \cdot \frac{d}{dx}(0). \] 4. **Evaluate the first term**: For the first term, substitute \( t = x \): \[ f'(x) = x \sin x \cdot 1. \] 5. **Evaluate the second term**: For the second term, substitute \( t = 0 \): \[ f'(x) = 0 \cdot \sin(0) \cdot 0 = 0. \] 6. **Combine the results**: Thus, we have: \[ f'(x) = x \sin x - 0 = x \sin x. \] Therefore, the derivative \( f'(x) \) is \[ \boxed{x \sin x}. \]
Promotional Banner