Home
Class 12
MATHS
int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(...

`int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx` is equal to

A

`tan x + cot x + C`

B

`tan x + cosec x + C`

C

`-tan x + cot x + C`

D

`tan x + sec x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx, \] we can break it down step by step. ### Step 1: Rewrite the Integral We start with the given integral: \[ \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] We can separate the terms in the numerator: \[ \int \left( \frac{\sin^2 x}{\sin^2 x \cos^2 x} - \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right) \, dx. \] ### Step 2: Simplify Each Term This simplifies to: \[ \int \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) \, dx. \] ### Step 3: Rewrite Using Trigonometric Functions We can express the integrals in terms of secant and cosecant: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx. \] ### Step 4: Integrate Each Term Now we can integrate each term separately: 1. The integral of \(\sec^2 x\) is \(\tan x\). 2. The integral of \(\csc^2 x\) is \(-\cot x\). Thus, we have: \[ \tan x - (-\cot x) = \tan x + \cot x. \] ### Step 5: Add the Constant of Integration Finally, we add the constant of integration \(C\): \[ \tan x + \cot x + C. \] ### Final Answer The final result of the integral is: \[ \tan x + \cot x + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

Find:int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

int\ (dx)/(sin^(2)x*cos^(2)x) is equal to

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

int 1/(sin^2x cos^2x )dx is equal to: