Home
Class 12
MATHS
If int(x^(3)dx)/(sqrt(1+x^(2))) = a(1+x^...

If `int(x^(3)dx)/(sqrt(1+x^(2))) = a(1+x^(2))^(3//2) + bsqrt(1+x^(2)) + C`, then

A

`a = (1)/(3), b = 1`

B

`a = (-1)/(3), b = 1`

C

`a = (-1)/(3), b = 1`

D

`a = (1)/(3), b = -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^3 \, dx}{\sqrt{1+x^2}}, \] we will use the substitution method. Let's go through the steps systematically. ### Step 1: Substitution Let \( t = \sqrt{1+x^2} \). Then, we can express \( x^2 \) in terms of \( t \): \[ t^2 = 1 + x^2 \implies x^2 = t^2 - 1. \] Now, differentiate both sides to find \( dx \): \[ \frac{d}{dx}(t^2) = 2t \frac{dt}{dx} = 2x \implies \frac{dt}{dx} = \frac{x}{t} \implies dx = \frac{t}{x} dt. \] ### Step 2: Express \( x \) in terms of \( t \) From our substitution, we have: \[ x = \sqrt{t^2 - 1}. \] Thus, we can express \( dx \) as: \[ dx = \frac{t}{\sqrt{t^2 - 1}} dt. \] ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) into the integral: \[ \int \frac{x^3 \, dx}{\sqrt{1+x^2}} = \int \frac{(\sqrt{t^2 - 1})^3 \cdot \frac{t}{\sqrt{t^2 - 1}} \, dt}{t} = \int \frac{(t^2 - 1)^{3/2} \cdot t}{t \cdot \sqrt{t^2}} \, dt. \] This simplifies to: \[ \int (t^2 - 1)^{3/2} dt. \] ### Step 4: Integrate Now we can integrate: \[ \int (t^2 - 1)^{3/2} dt. \] Using the formula for integration, we can find: \[ \frac{t^4}{4} - t + C. \] ### Step 5: Substitute back to \( x \) Now we substitute back \( t = \sqrt{1+x^2} \): \[ = \frac{(1+x^2)^2}{4} - \sqrt{1+x^2} + C. \] ### Step 6: Rearranging the expression We can express this in the required form: \[ = \frac{1}{4}(1+x^2)^{3/2} - (1+x^2)^{1/2} + C. \] ### Step 7: Identify coefficients From the expression, we can identify: - \( a = \frac{1}{4} \) - \( b = -1 \) Thus, the final answer is: \[ a = \frac{1}{4}, \quad b = -1. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1) int(x^(3)dx)/(sqrt(1-x^(2)))

int(dx)/(sqrt(1+2x-3x^(2)))

int((2x-1)dx)/(sqrt(x^(2)-x+3))

int(2x+3)/(sqrt(x^(2)+x+1))dx

int (x^(2) +1)/(sqrt(x^(2)+3))dx

int_(1)^(2)(dx)/(sqrt(x^(2)+4x+3))

int(dx)/((1+x)sqrt(3+2x-x^(2)))=

int(x+1)/(sqrt(2x^(2)+x-3))dx

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=