Home
Class 12
MATHS
int(1)^(sqrt(3))(dx)/(1+x^(2)) equals...

`int_(1)^(sqrt(3))(dx)/(1+x^(2))` equals

A

`(pi)/(3)`

B

`(2pi)/(3)`

C

`(pi)/(6)`

D

`(pi)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}, \] we can use the standard formula for integration: \[ \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C, \] where \( a = 1 \) in our case. ### Step-by-step Solution: 1. **Identify the formula to use**: We recognize that the integral can be solved using the formula mentioned above. Here, \( a = 1 \). 2. **Apply the formula**: According to the formula, we can write: \[ \int \frac{dx}{1+x^2} = \tan^{-1}(x) + C. \] 3. **Evaluate the definite integral**: We need to evaluate the integral from \( x = 1 \) to \( x = \sqrt{3} \): \[ \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} = \left[ \tan^{-1}(x) \right]_{1}^{\sqrt{3}}. \] 4. **Substitute the limits**: Now we substitute the upper and lower limits into the antiderivative: \[ = \tan^{-1}(\sqrt{3}) - \tan^{-1}(1). \] 5. **Calculate the values**: We know from trigonometric values that: - \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \) - \( \tan^{-1}(1) = \frac{\pi}{4} \) Therefore, we have: \[ = \frac{\pi}{3} - \frac{\pi}{4}. \] 6. **Find a common denominator**: To subtract these fractions, we find a common denominator, which is 12: \[ = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12}. \] 7. **Final answer**: Thus, the value of the integral is: \[ \int_{1}^{\sqrt{3}} \frac{dx}{1+x^2} = \frac{\pi}{12}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(Evaluate): int_(1)^(sqrt(3))(dx)/(1+x^(2))

Evaluate: int_(1)^(sqrt(3))(dx)/(1+x^(2))

Evaluate: int_(1)^(sqrt(3))(dx)/(1+x^(2))

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int(dx)/(x^(2)sqrt(a^(2)x^(2)+1)) equals

int(sqrt(x)dx)/(1+x) equals

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int_(0)^(1)x^(3)sqrt(1-x^(2))dx=

int(1)/(sqrt(9x-4x^(2)))dx is equal to