Home
Class 12
MATHS
int(0)^(2//3)(dx)/(4 + 9x^(2)) equals...

`int_(0)^(2//3)(dx)/(4 + 9x^(2))` equals

A

`(pi)/(6)`

B

`(pi)/(12)`

C

`(pi)/(24)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\frac{2}{3}} \frac{dx}{4 + 9x^2} \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand to match a standard form. The expression \(4 + 9x^2\) can be factored to make it easier to integrate. \[ 4 + 9x^2 = 4(1 + \frac{9}{4}x^2) \] Thus, we can rewrite the integral as: \[ \int_{0}^{\frac{2}{3}} \frac{dx}{4(1 + \frac{9}{4}x^2)} = \frac{1}{4} \int_{0}^{\frac{2}{3}} \frac{dx}{1 + \frac{9}{4}x^2} \] ### Step 2: Apply the Formula We can use the formula for the integral of the form \(\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C\). Here, \(a^2 = \frac{4}{9}\) implies \(a = \frac{2}{3}\). So, we rewrite our integral using this formula: \[ \frac{1}{4} \cdot \frac{1}{\frac{2}{3}} \int_{0}^{\frac{2}{3}} \frac{dx}{1 + \left(\frac{3}{2}x\right)^2} \] This simplifies to: \[ \frac{3}{8} \int_{0}^{\frac{2}{3}} \frac{dx}{1 + \left(\frac{3}{2}x\right)^2} \] ### Step 3: Evaluate the Integral Using the formula, we have: \[ \int \frac{dx}{1 + \left(\frac{3}{2}x\right)^2} = \frac{2}{3} \tan^{-1}\left(\frac{3}{2}x\right) + C \] Now, we need to evaluate this from \(0\) to \(\frac{2}{3}\): \[ \frac{3}{8} \left[ \frac{2}{3} \tan^{-1}\left(\frac{3}{2} \cdot \frac{2}{3}\right) - \frac{2}{3} \tan^{-1}(0) \right] \] Calculating the limits: \[ \tan^{-1}(1) = \frac{\pi}{4} \quad \text{and} \quad \tan^{-1}(0) = 0 \] So we have: \[ \frac{3}{8} \left[ \frac{2}{3} \cdot \frac{\pi}{4} - 0 \right] = \frac{3}{8} \cdot \frac{2\pi}{12} = \frac{3\pi}{48} = \frac{\pi}{16} \] ### Final Answer Thus, the value of the integral is: \[ \frac{\pi}{16} \]
Promotional Banner