Home
Class 12
MATHS
If (d)/(dx)f(x) = 4x^(3) - (3)/(x^(4)) s...

If `(d)/(dx)f(x) = 4x^(3) - (3)/(x^(4))` such that `f(2) = 0`. Then f(x) is

A

`x^(4) + (1)/(x^(3)) - (129)/(8)`

B

`x^(3) + (1)/(x^(4)) + (129)/(8)`

C

`x^(4) + (1)/(x^(3)) + (129)/(8)`

D

`x^(3) + (1)/(x^(4)) - (129)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that \[ \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4} \] and that \( f(2) = 0 \). ### Step 1: Integrate the derivative To find \( f(x) \), we need to integrate the expression \( 4x^3 - \frac{3}{x^4} \). \[ f(x) = \int \left( 4x^3 - \frac{3}{x^4} \right) dx \] ### Step 2: Perform the integration Now, we will integrate each term separately. 1. The integral of \( 4x^3 \): \[ \int 4x^3 \, dx = 4 \cdot \frac{x^4}{4} = x^4 \] 2. The integral of \( -\frac{3}{x^4} \): \[ \int -\frac{3}{x^4} \, dx = -3 \cdot \int x^{-4} \, dx = -3 \cdot \left( \frac{x^{-3}}{-3} \right) = \frac{1}{x^3} \] Combining these results, we have: \[ f(x) = x^4 + \frac{1}{x^3} + C \] where \( C \) is the constant of integration. ### Step 3: Use the initial condition to find \( C \) We know that \( f(2) = 0 \). We will substitute \( x = 2 \) into our equation to find \( C \). \[ f(2) = 2^4 + \frac{1}{2^3} + C = 0 \] Calculating \( f(2) \): \[ f(2) = 16 + \frac{1}{8} + C = 0 \] \[ 16 + 0.125 + C = 0 \] \[ C = -16.125 \] ### Step 4: Write the final expression for \( f(x) \) Now substituting \( C \) back into the equation for \( f(x) \): \[ f(x) = x^4 + \frac{1}{x^3} - 16.125 \] ### Final Answer Thus, the function \( f(x) \) is: \[ f(x) = x^4 + \frac{1}{x^3} - \frac{129}{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)[f(x)]=4x^(3)-(3)/(x^(4)) solve that f(2)=0 then find f(x)

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

int[(d)/(dx)f(x)]dx=

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

Statement 1: If differentiable function f(x) satisfies the relation 0AA x in R, and if f(x)+f(x-2)=0AA x in R, and if ((d)/(dx)f(x))_(x=a)=b, then ((d)/(dx)f(x))_(a+4000)=b Statement 2:f(x) is a periodic function with period 4.

Let (d)/(dx)(f(x))=((sin^(12)x-cos^(12)x)/((sin^(2)x-cos^(2)x)(1-3sin^(2)x cos^(2)x))) be such that f(0)=0 then f((pi)/(2)) equals (k pi)/(16). Find the value of k(k in N)

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to