Home
Class 12
MATHS
int(0)^(pi//2) e^x(sinx+cosx) dx...

`int_(0)^(pi//2) e^x(sinx+cosx) dx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} e^x (\sin x + \cos x) \, dx \), we will use integration by parts and properties of definite integrals. ### Step 1: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx + \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] Let: \[ I_1 = \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] Thus, \( I = I_1 + I_2 \). ### Step 2: Solve \( I_1 \) using integration by parts For \( I_1 \), we will use integration by parts. Let: - \( u = \sin x \) and \( dv = e^x \, dx \) Then: - \( du = \cos x \, dx \) and \( v = e^x \) Using integration by parts: \[ I_1 = \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} e^x \cos x \, dx \] Evaluating the boundary term: \[ \left[ e^x \sin x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) - e^0 \sin(0) = e^{\frac{\pi}{2}} - 0 = e^{\frac{\pi}{2}} \] Thus: \[ I_1 = e^{\frac{\pi}{2}} - I_2 \] ### Step 3: Solve \( I_2 \) using integration by parts Now we apply integration by parts to \( I_2 \): Let: - \( u = \cos x \) and \( dv = e^x \, dx \) Then: - \( du = -\sin x \, dx \) and \( v = e^x \) Using integration by parts: \[ I_2 = \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} e^x \sin x \, dx \] Evaluating the boundary term: \[ \left[ e^x \cos x \right]_{0}^{\frac{\pi}{2}} = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right) - e^0 \cos(0) = 0 - 1 = -1 \] Thus: \[ I_2 = -1 + I_1 \] ### Step 4: Solve the system of equations Now we have two equations: 1. \( I_1 = e^{\frac{\pi}{2}} - I_2 \) 2. \( I_2 = -1 + I_1 \) Substituting \( I_2 \) from the second equation into the first: \[ I_1 = e^{\frac{\pi}{2}} - (-1 + I_1) \] This simplifies to: \[ I_1 = e^{\frac{\pi}{2}} + 1 - I_1 \] Adding \( I_1 \) to both sides: \[ 2I_1 = e^{\frac{\pi}{2}} + 1 \] Thus: \[ I_1 = \frac{e^{\frac{\pi}{2}} + 1}{2} \] Now substituting back to find \( I_2 \): \[ I_2 = -1 + I_1 = -1 + \frac{e^{\frac{\pi}{2}} + 1}{2} = \frac{e^{\frac{\pi}{2}} - 1}{2} \] ### Step 5: Find the final value of \( I \) Now substituting \( I_1 \) and \( I_2 \) back into \( I \): \[ I = I_1 + I_2 = \frac{e^{\frac{\pi}{2}} + 1}{2} + \frac{e^{\frac{\pi}{2}} - 1}{2} \] Combining these: \[ I = \frac{(e^{\frac{\pi}{2}} + 1) + (e^{\frac{\pi}{2}} - 1)}{2} = \frac{2e^{\frac{\pi}{2}}}{2} = e^{\frac{\pi}{2}} \] ### Final Answer Thus, the value of the integral is: \[ I = e^{\frac{\pi}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2) abs(sinx-cosx) dx=

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

int e^sinx cosx dx

int_(0)^(pi//2)e^(x)sinx dx=

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .

Evaluate the following : int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate int_0^(pi/2) sinx/(sinx + cosx) dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to