Home
Class 12
MATHS
int(-pi)^(pi) x sin x dx = ....

`int_(-pi)^(pi) x sin x dx` = _______.

A

`pi`

B

0

C

`2pi`

D

`(pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

int_(0)^(pi) [2sin x]dx=

int_ (pi) ^ (16 pi) | sin x | dx =

int_(-pi/2)^(pi/2) sin^(7) x dx

int_(-pi/2)^(pi/2) sin^(2) x dx

int_(-pi/2)^(pi/2)sin^(9) x dx

Evaluate int_(-pi/2)^(pi/2) x^2 sin x dx

Prove that : (i) int_(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int_(-pi)^(pi) (sin^(25) x+x^(75))dx=0 (iii) int_(-pi)^(pi) e^(|x|) dx= 2 (e-1) (iv) int_(-pi//2)^(pi//2) sin^(9) x dx =0

int_(0)^( pi/2)(sin x)*dx