Home
Class 12
MATHS
Read the following text and answer the f...

Read the following text and answer the followig questions on the basis of the same :
`inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx`
`= f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx`
`= e^(x)f(x) + c`
`int e^(x)(sin x + cos x)dx` =

A

`e^(x)cos x + c`

B

`e^(x) sin x + c`

C

`e^(x) + c`

D

`e^(x)(-cos x + sin x ) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{x}(\sin x + \cos x)dx \), we will use the formula derived from the integration of the product of an exponential function and a function along with its derivative. ### Step-by-Step Solution: 1. **Identify \( f(x) \) and \( f'(x) \)**: - Here, we can let \( f(x) = \sin x \). - Therefore, the derivative \( f'(x) = \cos x \). 2. **Rewrite the integral**: - The integral can be rewritten as: \[ \int e^{x}(\sin x + \cos x)dx = \int e^{x}\sin x \, dx + \int e^{x}\cos x \, dx \] 3. **Use the integration formula**: - According to the integration formula: \[ \int e^{x}[f(x) + f'(x)]dx = e^{x}f(x) + C \] - Applying this to our case: \[ \int e^{x}(\sin x + \cos x)dx = e^{x}\sin x + C \] 4. **Final Result**: - Thus, the integral evaluates to: \[ \int e^{x}(\sin x + \cos x)dx = e^{x}\sin x + C \] ### Final Answer: \[ \int e^{x}(\sin x + \cos x)dx = e^{x}\sin x + C \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

inte^(x)[f(x)+f'(x)]dx=

inte^(x).[f(x)-f''(x)]dx=

int[f(x)+x.f'(x)]dx=

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

int(e^(x)-sin x)/(cos x+e^(x))dx