Home
Class 12
MATHS
Read the following text and answer the f...

Read the following text and answer the followig questions on the basis of the same :
`inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx`
`= f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx`
`= e^(x)f(x) + c`
`int e^(x)((x-1)/(x^(2)))dx` = __________.

A

`e^(x) + c`s

B

`(e^(x))/(x) + c`

C

`(e^(x))/(x^(2)) + c`

D

`(-e^(x))/(x^(2)) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \frac{x-1}{x^2} \right) dx \), we will use integration by parts and the properties of exponential functions. ### Step-by-Step Solution: 1. **Rewrite the Integral:** \[ \int e^x \left( \frac{x-1}{x^2} \right) dx = \int e^x \left( \frac{x}{x^2} - \frac{1}{x^2} \right) dx = \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx \] 2. **Separate the Integral:** \[ \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx = \int e^x \cdot \frac{1}{x} dx - \int e^x \cdot \frac{1}{x^2} dx \] 3. **Identify \( f(x) \) and \( f'(x) \):** Let \( f(x) = \frac{1}{x} \) and \( f'(x) = -\frac{1}{x^2} \). 4. **Use the Integration by Parts Formula:** According to the formula given in the text: \[ \int e^x [f(x) + f'(x)] dx = e^x f(x) + C \] We can apply this to both integrals. 5. **Calculate Each Integral:** - For \( \int e^x \cdot \frac{1}{x} dx \): \[ e^x \cdot \frac{1}{x} + C_1 \] - For \( \int e^x \cdot \frac{1}{x^2} dx \): \[ e^x \cdot \left(-\frac{1}{x}\right) + C_2 \] 6. **Combine the Results:** \[ \int e^x \cdot \frac{1}{x} dx - \int e^x \cdot \frac{1}{x^2} dx = e^x \cdot \frac{1}{x} + C_1 + e^x \cdot \frac{1}{x} + C_2 \] This simplifies to: \[ e^x \cdot \frac{1}{x} + C \] 7. **Final Result:** Thus, the final answer is: \[ \int e^x \left( \frac{x-1}{x^2} \right) dx = e^x \cdot \frac{1}{x} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

int[f(x)+x.f'(x)]dx=

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx