Home
Class 12
MATHS
Read the following text and answer the f...

Read the following text and answer the followig questions on the basis of the same :
`inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx`
`= f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx`
`= e^(x)f(x) + c`
`int e^(x)(x+1)dx` = __________.

A

`x e^(x) + c`

B

`e^(x) + c`

C

`e^(-x) + c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int e^{x}(x+1)dx\), we can use the formula derived from the integration of \(e^{x}[f(x) + f'(x)]dx\). ### Step-by-Step Solution: 1. **Identify \(f(x)\)**: We can let \(f(x) = x\). Therefore, we need to find \(f'(x)\): \[ f'(x) = \frac{d}{dx}(x) = 1 \] 2. **Apply the formula**: According to the formula given, we have: \[ \int e^{x}[f(x) + f'(x)]dx = e^{x}f(x) + C \] Substituting \(f(x) = x\) and \(f'(x) = 1\): \[ \int e^{x}(x + 1)dx = e^{x}x + C \] 3. **Final result**: Thus, we can write the final result as: \[ \int e^{x}(x + 1)dx = e^{x}x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

int[f(x)+x.f'(x)]dx=

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

inte^(x)(e^(x)-e^(-x))dx=