Home
Class 12
MATHS
Read the following text and answer the f...

Read the following text and answer the followig questions on the basis of the same :
`inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx`
`= f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx`
`= e^(x)f(x) + c`
`int(x e^(x))/((1+x)^(2))dx` = ________.

A

`x e^(x) + c`

B

`(e^(x))/((x+1)^(2)) + c`

C

`(x e^(x))/(x+1) + c`

D

`(e^(x))/(x+1) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x e^x}{(1+x)^2} \, dx \), we can use the technique of integration by parts and the given information in the problem statement. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \frac{x e^x}{(1+x)^2} \, dx \] We can split \( x \) as \( (1+x) - 1 \): \[ I = \int \frac{(1+x)e^x - e^x}{(1+x)^2} \, dx \] This simplifies to: \[ I = \int \frac{(1+x)e^x}{(1+x)^2} \, dx - \int \frac{e^x}{(1+x)^2} \, dx \] 2. **Simplify the First Integral**: The first integral simplifies as follows: \[ I_1 = \int \frac{(1+x)e^x}{(1+x)^2} \, dx = \int \frac{e^x}{1+x} \, dx \] Thus, we have: \[ I = I_1 - I_2 \] where \( I_2 = \int \frac{e^x}{(1+x)^2} \, dx \). 3. **Use Integration by Parts**: For \( I_1 \), we can use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let \( u = \frac{1}{1+x} \) and \( dv = e^x \, dx \). Then, we have: \[ du = -\frac{1}{(1+x)^2} \, dx \quad \text{and} \quad v = e^x \] Therefore: \[ I_1 = \left( \frac{e^x}{1+x} \right) - \int e^x \left(-\frac{1}{(1+x)^2}\right) \, dx \] This gives: \[ I_1 = \frac{e^x}{1+x} + I_2 \] 4. **Combine the Integrals**: Substituting \( I_1 \) back into the equation for \( I \): \[ I = \left( \frac{e^x}{1+x} + I_2 \right) - I_2 \] This simplifies to: \[ I = \frac{e^x}{1+x} \] 5. **Final Result**: Therefore, the final result for the integral is: \[ I = \frac{e^x}{1+x} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

int[f(x)+x.f'(x)]dx=

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx