Home
Class 10
MATHS
Given that x-sqrt(5) is a factor of the ...

Given that `x-sqrt(5)` is a factor of the cubic polynomial `x^(3)-3sqrt(5)x^(2)+13x-3sqrt(5)` , find all the zeroes of the polynomial.

Text Solution

AI Generated Solution

The correct Answer is:
To find all the zeroes of the polynomial \( P(x) = x^3 - 3\sqrt{5}x^2 + 13x - 3\sqrt{5} \), given that \( x - \sqrt{5} \) is a factor, we will perform polynomial long division and then solve the resulting quadratic equation. ### Step 1: Polynomial Long Division We will divide \( P(x) \) by \( x - \sqrt{5} \). 1. **Divide the leading term**: \[ \frac{x^3}{x} = x^2 \] 2. **Multiply** \( x^2 \) by \( x - \sqrt{5} \): \[ x^2(x - \sqrt{5}) = x^3 - \sqrt{5}x^2 \] 3. **Subtract** this from \( P(x) \): \[ P(x) - (x^3 - \sqrt{5}x^2) = (-3\sqrt{5} + \sqrt{5})x^2 + 13x - 3\sqrt{5} = -2\sqrt{5}x^2 + 13x - 3\sqrt{5} \] 4. **Next term**: Divide the leading term: \[ \frac{-2\sqrt{5}x^2}{x} = -2\sqrt{5}x \] 5. **Multiply**: \[ -2\sqrt{5}x(x - \sqrt{5}) = -2\sqrt{5}x^2 + 10 \] 6. **Subtract**: \[ (-2\sqrt{5}x^2 + 13x - 3\sqrt{5}) - (-2\sqrt{5}x^2 + 10) = 13x - 3\sqrt{5} - 10 = 13x - 10 - 3\sqrt{5} \] 7. **Next term**: Divide the leading term: \[ \frac{(13x - 10 - 3\sqrt{5})}{x} = 3 \] 8. **Multiply**: \[ 3(x - \sqrt{5}) = 3x - 3\sqrt{5} \] 9. **Subtract**: \[ (13x - 10 - 3\sqrt{5}) - (3x - 3\sqrt{5}) = 10x - 10 = 0 \] Since the remainder is zero, we have: \[ P(x) = (x - \sqrt{5})(x^2 - 2\sqrt{5}x + 3) \] ### Step 2: Solve the Quadratic Equation Now we need to find the roots of the quadratic \( x^2 - 2\sqrt{5}x + 3 = 0 \). Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -2\sqrt{5} \), and \( c = 3 \). 1. **Calculate the discriminant**: \[ b^2 - 4ac = (-2\sqrt{5})^2 - 4 \cdot 1 \cdot 3 = 20 - 12 = 8 \] 2. **Substitute into the formula**: \[ x = \frac{2\sqrt{5} \pm \sqrt{8}}{2} \] \[ = \frac{2\sqrt{5} \pm 2\sqrt{2}}{2} \] \[ = \sqrt{5} \pm \sqrt{2} \] ### Step 3: Final Roots Thus, the zeroes of the polynomial are: 1. \( x = \sqrt{5} \) 2. \( x = \sqrt{5} + \sqrt{2} \) 3. \( x = \sqrt{5} - \sqrt{2} \)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    OSWAL PUBLICATION|Exercise BOARD CORN (Short Answer Type Questions)|5 Videos
  • POLYNOMIALS

    OSWAL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS |25 Videos
  • POLYNOMIALS

    OSWAL PUBLICATION|Exercise NCERT EXEMPLAR (Exercise -2.3)|10 Videos
  • PAIR OF LINEAR EQUTIONS IN TWO VARIABLES

    OSWAL PUBLICATION|Exercise Case-Based MCQs|15 Videos
  • PROBABILITY

    OSWAL PUBLICATION|Exercise Self Assessment|66 Videos

Similar Questions

Explore conceptually related problems

Given that x-sqrt(5) is a factor of the cubic polynomial x^(3)-3sqrt(5)x^(2)+13x-3sqrt(5), find the other zeroes of the polynomial.

sqrt(5)x^(2)+2x-3sqrt(5)

Find the zero of the polynomial 3x + 5 .

Given that sqrt(3) is a zero of a polynomial 6x^(3)+sqrt(2x^(2))-10x-4sqrt(2) , find the other two zeroes.

If 1 and -1 are zeroes of the polynomial x^(3)+5x^(2)-x-5 , then find all zeroes of the given polynomial.

x^(2)+(3-sqrt(5))x-3sqrt(5)=0

Find zeroes of the polynomial x^(2)-sqrt(2)x-12 .

Write zeros of the polynomial p(x)=4sqrt(3)x^(2)+5x-2sqrt(3)

If two zeroes of the polynomial x^(4)+3x^(3)-20x^(2)-6x+36 are sqrt(2) and -sqrt(2). find the other zeroes of polynomial