Home
Class 10
MATHS
What willl be the simplest form of (sqrt...

What willl be the simplest form of `(sqrt(45)+sqrt(20))/(sqrt(5))`?

A

`5sqrt(5)`

B

`5`

C

`2sqrt(5)`

D

`sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\sqrt{45} + \sqrt{20}) / \sqrt{5}\), we will follow these steps: ### Step 1: Simplify \(\sqrt{45}\) and \(\sqrt{20}\) 1. **Factor \(\sqrt{45}\)**: \[ \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5} \] 2. **Factor \(\sqrt{20}\)**: \[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5} \] ### Step 2: Substitute back into the expression Now, substitute the simplified forms back into the original expression: \[ \frac{\sqrt{45} + \sqrt{20}}{\sqrt{5}} = \frac{3\sqrt{5} + 2\sqrt{5}}{\sqrt{5}} \] ### Step 3: Combine the terms in the numerator Combine the terms in the numerator: \[ 3\sqrt{5} + 2\sqrt{5} = (3 + 2)\sqrt{5} = 5\sqrt{5} \] ### Step 4: Simplify the fraction Now, substitute this back into the expression: \[ \frac{5\sqrt{5}}{\sqrt{5}} \] Since \(\sqrt{5}\) in the numerator and denominator cancels out: \[ = 5 \] ### Final Answer Thus, the simplest form of \(\frac{\sqrt{45} + \sqrt{20}}{\sqrt{5}}\) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • REAL NUMBERS

    OSWAL PUBLICATION|Exercise ASSERTION AND REASON BASED MCQs|7 Videos
  • REAL NUMBERS

    OSWAL PUBLICATION|Exercise CASE BASED MCQs|15 Videos
  • REAL NUMBERS

    OSWAL PUBLICATION|Exercise Board Corner (Short answer questions )|9 Videos
  • QUADRATIC EQUATIONS

    OSWAL PUBLICATION|Exercise Passage Based Questions |10 Videos
  • SAMPLE PAPER 1

    OSWAL PUBLICATION|Exercise QUESTION BANK|100 Videos

Similar Questions

Explore conceptually related problems

sqrt(45)-3sqrt(20)+4sqrt(5)

Write the simplest form of sqrt(490)

8sqrt(5)+sqrt(20)-sqrt(125)

Write the simplest form of sqrt sqrt(150)

((2sqrt (45) + 3sqrt (20)) / (2sqrt (5))

Simplify : ((2 sqrt(45) + 3 sqrt(20)))/(2sqrt5)

sqrt(x+5)+sqrt(x-20)=7

Write the simplest form : cos^(-1)(sqrt(((sqrt(1+x^2) +1)/(2sqrt(1+x^2))))

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1