Home
Class 12
MATHS
int0^(ln13)(e^xsqrt(e^x-1))/(e^x+3)dx...

`int_0^(ln13)(e^xsqrt(e^x-1))/(e^x+3)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

Evaluate : overset(log5)underset(0)int (e^xsqrt(e^x-1))/(e^x + 3 ) dx

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

Show that int_(0)^(log 5) (sqrt(e^(x)-1))/(e^(x)+3)e^(x)dx = 4 - pi

Evaluate : int_0^log5(e^x(e^x-1)^(1/2))/(e^x+3)dx