Home
Class 14
MATHS
If 32 xx 8^(n+2) = 2^(m), then m equals...

If `32 xx 8^(n+2) = 2^(m)`, then m equals

A

n + 8

B

2n + 10

C

3n + 11

D

3n + 10

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If 16xx8^(n+2)=2^(m) , then m is equal to

For any non-zero integers 'a' and 'b" and whole numbers m and n. - a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) + a^(n)=a^(m-n) If (2/9)^(3) xx (2/9)^(6) =(2/9)^(2m-1) , then m equals

If 27 xx (81)^(2n+2) - 3^(m) = 0 , then what is m equal to ?

If 504 = 2 ^(m) xx 3 ^(n) xx 7 ^(p), then the value of m + n - p is

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

If 8^(m)=32 , then m= _______.

For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) 2^(3) + 2^(3) + 2^(3) +2^(3) is equal to: