Home
Class 14
MATHS
If x = t ^((1)/( t -1)) and y = t ^(( t ...

If `x = t ^((1)/( t -1)) and y = t ^(( t )/(t -1)) , t gt 0 , t ne 1,` then what is the relation between x and y ?

A

`y ^(x) = x ^(1//y)`

B

`x ^(1/y) = y ^(1//x)`

C

`x ^(y) = y ^(x)`

D

`x ^(y) = y ^(1//x)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

x = t + (1)/(t), y = t - 1/t

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If a gt0, x=(t+(1)/(t))^(a) and y=a^((t+(1)/(t))) , find (dy)/(dx).

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=