Home
Class 14
MATHS
If 2b = a + c and y^(2) = xz, then what ...

If `2b = a + c` and `y^(2) = xz`, then what is `x^(b-c) y^(c-a)z^(a-b)` equal to ?

A

3

B

2

C

1

D

`-1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to

If (b)/(y) + (z)/(c) = 1 and (c)/(z) + (x)/(a) = 1 , then what is (ab + xy)/(b x) equal to ?

If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d) , then the what is x^(3)+y^(3)+z^(3) equal to?

If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) is

If x= (a//b) + (b//a), y= (b//c) + (c//b) and z= (c//a) + (a//c) , then what is the value of xyz - x^(2)- y^(2)- z^(2) ?

If X = {a, {b},c}, Y= {{a},b,c} and Z = {a,b, {c}} ,then (X nn Y) nn Z equals to