Home
Class 14
MATHS
The length of sides of a triangle are 3x...

The length of sides of a triangle are `3x , 4 sqrt( y ) , 5 root ( 3) ( z)`, where `3x lt 4 sqrt( y ) lt 5 root ( 3) ( z)`. If one of the angles is `90^(@)`, then what are the minimum integral value of x,y,z respectively ?

A

A)1,2,3

B

B)2,3,4

C

C)1,1,1

D

D)3,4,5

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The sides of a triangle are 3x+4y,4x+3y and 5x+5y units,where x,y>0. The /_ is

If x = sqrt(2), y = root (3)(3) and z = root ( 6)(6) , then which one of the following is correct ?

If log sqrt(x)=log root(3)(y)=log root(5)(z) then yz=

If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are respectively

What is the area of the triangle having side lengths ( y )/( z) + ( z)/( x) , ( z)/( x) + ( x )/( y ), ( x )/( y ) + ( y )/( z) ?

If x = 1, y = 2, z = 5 , then find the value of 3x – 2y + 4z.

If x : y : z = 3 : 4 : 9, then what will be the value of (2x + 3y + z) : (2z + x – 3y)?

If x^(2) + 3y^(2) + 4z^(2)+ 19 = 4 sqrt(3) ( x + y + z) , then the value of ( x - y + 4z) is: