Home
Class 14
MATHS
What is the value of ((3)/(4) div (9)/(...

What is the value of `((3)/(4) div (9)/(32) +(4)/(3) xx (2)/(3) " of "(27)/(16))/((1)/(2) xx ((8)/(2) -2) div (4)/(9) +((1)/(3)+(1)/(6)))`? (a) `(10)/(3)` (b) `(13)/(2)` (c) `(25)/(2)` (d) `(31)/(2)`

A

`(50)/(33)`

B

`(53)/(33)`

C

`(25)/(2)`

D

`(31)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\left(\frac{3}{4} \div \frac{9}{32}\right) + \left(\frac{4}{3} \times \frac{2}{3} \text{ of } \frac{27}{16}\right)}{\left(\frac{1}{2} \times \left(\frac{8}{2} - 2\right) \div \frac{4}{9}\right) + \left(\frac{1}{3} + \frac{1}{6}\right)} \] we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Solve the numerator 1. **Calculate \(\frac{3}{4} \div \frac{9}{32}\)**: \[ \frac{3}{4} \div \frac{9}{32} = \frac{3}{4} \times \frac{32}{9} = \frac{3 \times 32}{4 \times 9} = \frac{96}{36} = \frac{8}{3} \] **Hint**: To divide fractions, multiply by the reciprocal of the divisor. 2. **Calculate \(\frac{4}{3} \times \frac{2}{3} \text{ of } \frac{27}{16}\)**: \[ \frac{4}{3} \times \frac{2}{3} \text{ of } \frac{27}{16} = \frac{4}{3} \times \frac{2}{3} \times \frac{27}{16} \] First calculate \(\frac{4}{3} \times \frac{2}{3} = \frac{8}{9}\): \[ \frac{8}{9} \times \frac{27}{16} = \frac{8 \times 27}{9 \times 16} = \frac{216}{144} = \frac{3}{2} \] **Hint**: "Of" in mathematics often means multiplication. 3. **Combine the results**: \[ \frac{8}{3} + \frac{3}{2} \] To add these fractions, find a common denominator (which is 6): \[ \frac{8}{3} = \frac{16}{6}, \quad \frac{3}{2} = \frac{9}{6} \quad \Rightarrow \quad \frac{16}{6} + \frac{9}{6} = \frac{25}{6} \] **Hint**: When adding fractions, convert them to have a common denominator. ### Step 2: Solve the denominator 1. **Calculate \(\frac{1}{2} \times \left(\frac{8}{2} - 2\right)\)**: \[ \frac{8}{2} - 2 = 4 - 2 = 2 \quad \Rightarrow \quad \frac{1}{2} \times 2 = 1 \] **Hint**: Simplify inside the parentheses first. 2. **Calculate \(1 \div \frac{4}{9}\)**: \[ 1 \div \frac{4}{9} = 1 \times \frac{9}{4} = \frac{9}{4} \] **Hint**: Division by a fraction is the same as multiplying by its reciprocal. 3. **Calculate \(\frac{1}{3} + \frac{1}{6}\)**: Find a common denominator (which is 6): \[ \frac{1}{3} = \frac{2}{6} \quad \Rightarrow \quad \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2} \] **Hint**: Again, find a common denominator for addition. 4. **Combine the results**: \[ \frac{9}{4} + \frac{1}{2} \] Convert \(\frac{1}{2}\) to have a denominator of 4: \[ \frac{1}{2} = \frac{2}{4} \quad \Rightarrow \quad \frac{9}{4} + \frac{2}{4} = \frac{11}{4} \] **Hint**: Always convert fractions to a common denominator before adding. ### Step 3: Final calculation Now we have: \[ \frac{\frac{25}{6}}{\frac{11}{4}} = \frac{25}{6} \times \frac{4}{11} = \frac{100}{66} = \frac{50}{33} \] ### Conclusion The final result is: \[ \frac{50}{33} \] ### Answer The answer is \((a) \frac{50}{33}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

What is the value of (3)/(4) of ((1)/(3) div (1)/(2)) + (2-(2)/(5)) xx (3)/(2) + (2)/(3) ?

The value of (5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) is (a) 2(1)/(4) (b) 2(1)/(3) (c) 3(1)/(4) (d) 4(1)/(2)

What is the value of [22^((3)/(4)) div (14)/(3) " of " (8-(1)/(5) + 4-2 div (1)/(2))] ?

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

What is the value of 512 div 16 + 4 xx (5)/(2) " of " ((1)/(8) +(1)/(3)) ?

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)